いままで半導体スイッチとしてMOSFETIGBTのお話をしてきましたが今回はもう1つの半導体スイッチトランジスタについてのお話をしたいと思います。

 

トランジスタはVVVFなどのデジタル回路ではスイッチとして使用されている部品ですがアナログ回路では電流増幅器などとして使用されます。トランジスタが関係するアナログ回路でメジャーなものと言えばオーディオ回路やラジオなどがありますが今回はここがメインのお話ではないので省略します。

近年ではパワー素子としてトランジスタが使われることは少なくなりました。しかし、今でも電子回路内でのスイッチとして使われることは多少あります。そのため、簡単ではありますがトランジスタの使い方の紹介をしたいと思います。

半導体スイッチの回でもお話したようにトランジスタというのは電流でON/OFFを切り替える電流制御の素子です。ベースに流した電流のhFE倍の電流がコレクタに流れます。  

 

トランジスタの周辺部品の選定

ここで初めにトランジスタを単純にスイッチとして使う場合の回路図を示してみます。

1

ここだけだとMOSFETIGBTの駆動回路とほぼ同じように見えます。しかし、ベース抵抗の求め方が今までとは全然違います。トランジスタのベース抵抗は以下のような手順で求めます。

2

コレクタに流れる電流は設計上で決めておき、その電流値と増幅率からベースに流す必要のある電流が求まります。しかしこの値は最低限度の値であり、このベース電流値ではトランジスタでコレクタに流れる電流を制御することになり、スイッチとして使用するのには適切とは言えません。また、部品の誤差などで場合によってはコレクタに流せる電流が設計値より小さくなるほか、トランジスタでの損失も大きくなる場合があります。そのため、ベースには少なくとも先ほど計算した電流の倍の電流を流すべきと言えます。これより許容できる最大の抵抗値は以下の式で求まります。

 3

実際に抵抗器を選定する際は、これより低い値の抵抗値を使います。なお、スイッチとして使う場合トランジスタを飽和領域で使うのが最適なので、前段回路が許容できるなら少し多めにベース電流を流す、つまりベース抵抗の値を下げると良いでしょう。

 

次にプルダウン抵抗ですが、こちらはプルダウン抵抗なので10kΩ程度を取り付ければ大丈夫です。また、トランジスタの場合はベースが電流駆動という仕様上ベースがハイインピーダンスになることがないのでプルダウン抵抗を省略しても大丈夫です。あくまで保護回路です。

 

増幅率の確保

次は、増幅率hFEの大きさについてのお話です。増幅率が高ければ少ない電流でスイッチを駆動できます。しかし、基本的に容量の大きな素子では一般的にhFEが低いという問題点があります。増幅率の目安としては、小信号用のトランジスタは増幅率が百から数百程度あり、大電流に耐える大型のトランジスタは百に満たない素子が多いです。そのため、大電流に対応する半導体スイッチを動かすためにはベース電流も多く必要になります。

そこで増幅率を稼ぐためにトランジスタの前段にさらにトランジスタを接続するダーリントン接続と呼ばれる回路を組むことがあります。ダーリントン接続の回路図は以下のようになります。

4

回路としては、トランジスタのベースにトランジスタを付けた単純な回路です。これによって増幅率の近似はTr1の増幅率とTr2の増幅率を掛け合わせたものになります。

なお、厳密な増幅率は以下のように求めます。

 5

厳密な計算としてはこのような計算ができますがややこしさに対して計算結果の差がそこまで大きくないです。例としてTr1の増幅率が100 Tr2の増幅率が20として計算をしてみます。単純な掛け算、正式な計算の順です。
6

しかし、このように複雑な計算を行い算出した厳密解と近似の計算の誤差はあまり大きなものではありません。そのため、増幅率の重要度が低い場合は近似式で計算しても問題ないでしょう。

 

近似と厳密解の計算例

例としてTr1の増幅率が100 Tr2の増幅率が20として計算をします。単純な掛け算、正式な計算の順です。
キャプチャ


計算結果としては5%程度の誤差がでましたが、実際のパワー回路の設計では素子の増幅率のばらつきの方が大幅に大きいので特に気にする必要はありません。

 

今回説明したダーリントン接続のトランジスタを1つのモジュールにしたものもあり、それをダーリントントランジスタと言います。このダーリントントランジスタは増幅率が高く耐電流も比較的大きいという特徴があるのでこのトランジスタが使える範囲ではダーリントントランジスタを使えば楽に回路を組むことができます。

トランジスタで大電流の回路を組む場合はこのようにダーリントン接続を使用して順次電流値を高めて大電流をスイッチング可能にします。なお、MOSFETIGBTと違い前段回路をトーテムポール回路にしなくてもよいのがメリットともいえるかもしれません。

 

トランジスタの選定方法

基本的にはIGBTに準じた計算方法で選びます。耐圧と耐電流が実使用する電圧・電流を満たしていることはもちろん発熱に対する損失も計算する必要があります。基本的に損失は順方向電圧降下と電流の積とスイッチング損失なのでIGBTの損失計算と同じように計算できます。なお、スイッチング速度が遅いのでスイッチング損失はIGBTに比べると非常に大きな値となります。

 

おまけ

アナログ回路でのトランジスタは電流増幅器として使われますので、目的の電流増幅率に応じてベース抵抗等を求める必要があります。また、トランジスタの増幅率のばらつきによる回路の性能差抑えるために、半固定抵抗を用いる場合も多いです。

トランジスタには今回紹介したエミッタをGNDに接続するエミッタ接地のほかに、コレクタを接地するコレクタ接地やベースを接地するベース接地などいろいろな使い方があります。